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ABSTRACT: Downscaling precipitation fields is a necessary step in a number of applications, especially in hydrological

modeling where the meteorological forcings are frequently available at too coarse resolution. In this article, we review the

Gibbs sampling disaggregation model (GSDM), a stochastic downscaling technique originally proposed by Gagnon et al.

The method is capable of introducing realistic, weather-dependent, and possibly anisotropic fine-scale details, while pre-

serving the mean rain rate over the coarse-scale pixels. The main developments compared to the former version are (i) an

adapted Gibbs sampling algorithm that enforces the downscaled fields to have a similar texture to that of the analysis fields,

(ii) an extensive test of variousmeteorological predictors for controlling specific aspects of the texture such as the anisotropy

and the spatial variability, and (iii) a review of the regression equations used in the model for defining the conditional

distributions. A perfect-model experiment is conducted over a domain in the southeastern United States. The metrics used

for verification are based on the concept of gridded, stratified variogram, which is introduced as an effective way of

reproducing the abilities of human eyes for detecting differences in the field texture. Results indicate that the best overall

performances are obtainedwith themost sophisticated, predictor-basedGSDMvariant. The 600-hPawind is found to be the

best year-round predictor for controlling the anisotropy. For the spatial variability, kinematic predictors such as wind shear

are found to be best during the convective periods, while instability indices are more informative elsewhere.
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1. Introduction
Thanks to scientific and computational progress, it is now-

adays possible to run high-resolution hydrological models on a

continental scale (e.g., the National Water Model; Salas et al.

2018; Viterbo et al. 2020), using fine-scale meteorological an-

alyses for calibration. In a forecasting context though, meteo-

rological inputs at such resolution can only be produced by

short-term, limited-area numerical weather prediction (NWP)

models. For applications like medium-range forecasting or

climate prediction, the meteorological forcings are most often

available at a coarser resolution, thus calling for a procedure

referred to as downscaling. When applied to the variable pre-

cipitation, the term disaggregation is sometimes used, with the

idea of fragmenting the volume of rainfall from coarse to fine-

scale pixels. Besides its nonlinear behavior, precipitation

exhibits a high spatial variability that makes it one of the most

challenging weather variables to downscale (Maraun et al.

2010). Meanwhile, this spatial variability has been shown to

play a crucial role in the hydrologic response of a catchment.

Several studies, when applying small-scale spatial pertur-

bations to rainfall fields while keeping the total volume

unchanged, have reported large effects not only on peak flow

(Rebora et al. 2006a; Younger et al. 2009) but also on the soil

moisture and groundwater level (Schuurmans and Bierkens

2007). Precipitation downscaling is thus a critical step for hy-

drological modeling if the model resolution mismatches that of

the meteorological forcing available.

Another motivation for the research presented in this article

is related to ensemble forecast postprocessing. The U.S.

National Weather Service (NWS) has launched the National

Blend of Models (NBM) program, with the objective of pro-

viding to regional and national forecast centers a seamless and

spatially consistent digital starting point over the entire United

States. The NBM generates high-resolution, calibrated, prob-

abilistic precipitation forecasts by statistically postprocessing

multimodel ensembles (Hamill and Scheuerer 2018). However,

for now these postprocessed distributions are available for

every pixel and lead time independently, meaning that a

forecaster cannot derive a probabilistic forecast of the pre-

cipitation accumulated over a larger area or a longer period of

time. This would require the recreation of synthetic ensembles

that integrate the spatial and temporal dependence of precip-

itation. The ensemble copula coupling (ECC; Schefzik et al.

2013) is an attractive method for that purpose, as it imposes the

space–time structure of the raw (i.e., unprocessed) ensembles

to the synthetic ensembles. However, ECC is not immediately

applicable in the context of the NBM, because of a mismatch

between the spatial resolution of the postprocessed distribu-

tions and that of the raw ensembles. The strategy envisaged to
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address that issue is to downscale the raw ensemble precipi-

tation fields prior to applying ECC. The present article focuses

on the downscaling process only, as the outcomes may be

useful in a wider range of applications. Its specific use within

the NBM context will be the subject of a following paper.

Precipitation downscaling has been the subject of active

research (for reviews see Fowler et al. 2007; Maraun et al.

2010). We restrict here to methods that are statistical (as op-

posed to dynamical, whose computational cost for running

high-resolution atmospheric models can be prohibitively high),

and which generate a gridded fine-scale field (as opposed to

techniques that downscale to individual sites). Ideally, such

methods should be able to (i) preserve the mean rain rate over

each coarse-scale pixel (assuming that coarse-scale fields are

bias corrected, which is beyond the scope of this paper), (ii)

avoid any form of ‘‘blockiness’’ (i.e., visual discontinuities at

the edges of the coarse-scale pixels), (iii) reproduce subgrid

anisotropy, and (iv) account for repeatable local effects, such

as orography.

The review proposed in Table 1, which does not pretend to

be exhaustive, attempts to summarize existing methods re-

garding which properties (i)–(iv) they honor, and to categorize

them by their physical assumption(s) the downscaling process

is based on. A first group gathers methods that assume an in-

variance of some statistical characteristics of precipitation

over a range of scales, a property referred to as scaling. This

can, for instance, manifest as a log–log linearity of the power

spectrum through scales (Rebora et al. 2006b), or a simple-

scaling behavior of the rainfall fluctuations (Perica and

Foufoula-Georgiou 1996b). Most often, the downscaling pro-

cess is a multiplicative cascade, i.e., an iterative process that

fragments the rainfall volume of the coarse-scale pixels into

smaller and smaller pixels, using a random generator that

respects a given scale-invariance property. While most scaling-

based techniques are able to conserve the mean rain rate, for

many it is at the expense of a strong blockiness (e.g., Ahrens

2003; Rebora et al. 2006a; Guan et al. 2009). To avoid this ar-

tifact, other methods try to characterize the spatial structure of

precipitation directly at the fine scale of interest, by modeling

the conditional distribution of precipitation at each fine-scale

pixel based on the distribution at neighboring pixels, usually

assuming Markov properties. Once such conditional distribu-

tion model is defined, full downscaled fields can be generated

using sampling algorithms such as theGibbs sampling (Allcroft

and Glasbey 2003; Onibon et al. 2004; Gagnon et al. 2012).

Alternatively, Ebtehaj et al. (2012) and Foufoula-Georgiou

et al. (2014) express the desired spatial properties in a suitable

space (e.g., wavelets, derivative) where they exhibit some form

of sparsity, which can then be used to regularize (and solve) the

inverse problem into which the authors recast downscaling.

Overall, the main strength of spatial-based method is to gen-

erate spatially coherent fields that are free of unrealistic dis-

continuities. However, as such, not many can reproduce a

subgrid anisotropy, the authors generally seeking to limit the

complexity to an acceptable level (e.g., Allcroft and Glasbey

2003; Rebora et al. 2006b). Finally, we refer to the third main

physical assumption as explainability, which assumes that the

spatial variability of precipitation can be related to fine-scale

predictors (e.g., topographic, geographic, or atmospheric),

by means of traditional regression methods (Guan et al.

2009; Park 2013) or more complex machine learning algo-

rithms (Xu et al. 2015; He et al. 2016). The ability to account

for repeatable local effects such as orography is their main

strength, although a number of studies have shown that it is

possible to modify scaling or spatial-based methods to also

fulfill that need (Badas et al. 2006; Gagnon et al. 2013;

Terzago et al. 2018).

Among the existing downscaling methods listed in Table 1,

the Gibbs sampling disaggregation model (GSDM), intro-

duced by Gagnon et al. (2012) and refined in Gagnon and

Rousseau (2014) to include wind predictors, looks particu-

larly appealing with regard to properties (i)–(iv). The ap-

proach consists in modeling the spatial structure of the

rainfall fields through a conditional model of the precipitation

at one pixel given the value of the neighboring pixels (and

eventually meteorological predictors), without modeling the

full joint distribution. The Gibbs sampling algorithm is then

used to sample realizations of the full field, ensuring after

each iteration that the mean rain rate at the coarse scale is

preserved. While the original version does not account for

local effects, Gagnon et al. (2013) has shown that it possible to

introduce orographic effects. In this paper though, we will

focus on the simplified case without orography, keeping this

aspect for a future study.

Despite its capabilities, the GSDM as described in the above

references has several limitations. In particular, it relies on the

assumption that the spatial variability of rainfall can be fully

described by the conditional distribution model, which in

practice is hard to achieve while keeping an acceptable level of

parsimony. As a consequence, the Gibbs sampling may con-

verge toward a joint distribution whose spatial structure is

unrealistic. In this paper, we address this issue with a so-called

‘‘incomplete’’ Gibbs sampling: instead of waiting for the al-

gorithm to converge, we predefine a much smaller number of

iterations, and calibrate the conditional distribution model

such that the final downscaled fields have the desired texture.

The benefice is twofold: a parsimonious model can be used

without the risk of converging to unrealistic fields, and the

number of iterations is drastically reduced, which makes the

GSDM computationally affordable for use over very large

areas. By modifying the algorithm though, the original re-

gression models (for defining the conditional distributions) but

also the meteorological predictors may not be optimal any-

more. This study therefore tests a large variety of models and

predictors, discuss their impacts on the downscaled fields, and

performs a verification using different quantitative metrics of

the rainfall texture.

The notion of texture, which is central in this revisedGSDM,

refers to the extent to which precipitation changes with dis-

tance and potentially with direction. To quantify differences in

texture between two fields, we introduce new metrics based on

the concept of gridded, stratified variograms. Gridded means

measuring the variogram for field values separated by specific

distances and directions, which permits taking into account a

potential anisotropy, while stratified means discriminating the

texture between low and high precipitation values.
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The remainder of this article is organized as follows. Section 2

presents the case study and data. Section 3 describes the GSDM

algorithm, and details the different combinations of regression

models and predictors. The gridded, stratified variogram for

quantifying texture is then introduced in section 4. Section 5

provides results and discusses them, while section 6 concludes.

2. Case study and data
The area considered in this downscaling experiment is a

48 3 48 square delineated by 868–908W longitude and 318–358N
latitude, spanning the states of Mississippi and Alabama in

the southeastern United States. Winter precipitation is mostly

stratiform, with large-scale, steady rainfall features, whereas

summer precipitation is mostly convective, although the rain-

fall features can take place at various scales depending on the

degree of convective organization. Spring and fall months see

both stratiform and convective precipitation, depending on the

synoptic situation. The region has been chosen for its flat to-

pography, such that precipitation fields can be assumed free of

orographic effects. The integration of these local effects within

our reviewed GSDM is therefore not included in this paper.

Finally, the domain size has been chosen as a trade-off between

the requirement of having enough rainfall features in the

downscaled fields for a robust assessment of texture, while

being small enough for the assumption of stationarity to

be valid.

TABLE 1. A summary of precipitation downscaling methods that have been proposed in the literature, restricted to those that are

statistical, and which generate a gridded fine-scale field. This list does not pretend to be exhaustive. Columns (i)–(iv) refer to the desirable

properties of a downscaling method (see text).

Name of

method (if any)

and reference

Main physical

assumption(s)

Downscaling

mechanism(s)

(i) Conserve

coarse-scale

volume

(ii) Free of

blockiness

(iii) Reproduce

subgrid anisotropy

seamlessly

(iv) Account for

repeatable local

effects

Perica and

Foufoula-Georgiou

(1996b); Ahrens (2003)

Scaling Multiplicative

cascade

Yes Noa No No

STRAIN (Deidda 2000) Scaling Multiplicative

cascade

In expectation No No Nob

RainFARM (Rebora

et al. 2006b)

Scaling Transformation

of a GRF

Yes Noc No Nod

HiDRUS (Raut et al. 2019) Scaling Multiplicative

cascade 1
advection

No Yes Yes Yes

Allcroft and Glasbey (2003) Spatial Block Gibbs

sampling

Approximately Yes No No

Onibon et al. (2004) Spatial Gibbs sampling Only the entire

domain average

Yes No No

VarD (Foufoula-Georgiou

et al. 2014); SPaD

(Ebtehaj et al. 2012)

Spatial Regularization

of the inverse

problem

Yes Yes No No

GSDM(Gagnon et al. 2012) Spatial,

explainability

Gibbs sampling Yes Yes Yes Noe

ASCAR (Guan et al. 2009);

Xu et al. (2015)

Explainability,

scaling

Multivariate

regression

or ANN 1
multiplicative

cascade

Yes No No Yes

Prec-DWARF (He

et al. 2016)

Explainability,

spatial

Random forest No Yes Yes Yes

Park (2013) Explainability,

spatial

Multivariate

regression1
area-to-point

kriging

Yes Yes No Yes

a Extension in Harris and Foufoula-Georgiou (2001) to reduce blockiness.
b Extension in Badas et al. (2006) to account for orographic effects.
c Extension in Terzago et al. (2018) to reduce blockiness.
d Extension in Terzago et al. (2018) to account for orographic effects.
e Extension in Gagnon et al. (2013) to account for orographic effects.
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The fine-scale precipitation data comes from the climatology

calibrated precipitation analysis (CCPA; Hou et al. 2014), a

calibrated version of the Stage IV gridded dataset (Lin and

Mitchell 2005) that covers the contiguous United States at

4.7-km resolution and utilizes both gauge and radar data. For

this study, CCPA has been upscaled on a regular grid at the

resolution of 1/168 (;7 km), which will be our ‘‘fine-scale res-

olution.’’ We consider the same accumulation period as in the

NBM operational postprocessing, i.e., 6 h, which we express

in local time (1800–0000, 0000–0600, 0600–1200, and 1200–

1800 CST) for ease of physical interpretation.

The meteorological predictors used by the downscaling

model come from the ERA5 reanalysis (Hersbach et al.

2020), produced by the European Centre for Medium-Range

Weather Forecasts (ECMWF) and available at 1/48 (;28 km)

resolution. This will be our ‘‘coarse-scale resolution.’’ The

list of all predictors tested will be discussed in section 3d.

Those that are not directly available in ERA5 are computed

with the Python module MetPy (May et al. 2019; UCAR

2019), using the temperature, geopotential, specific humidity,

and U–V wind variables at all the pressure levels available

in ERA5. The reported predictor values are the averages of

the instantaneous values at the beginning and end of each

6-h period.

In the present downscaling experiment, referred to as a

‘‘perfect model’’ experiment, the 643 64 (pixels) precipitation

analysis fields at 1/168 resolution are aggregated to the 1/48
resolution to form 16 3 16 coarse-scale fields, before down-

scaling them back to 1/168 (scaling ratio of 4). It is important

to note that this setup happens to be dyadic regarding both

the domain size (64 5 26) and the scaling ratio (4 5 22), but

this is by no means mandatory for applying the GSDM, nor

for computing the verification metrics presented in this

article.

The period considered is 2004–17, divided into two periods

of 7 years each: the even years are used for calibration, and the

odd years for validation. The model is calibrated separately for

each month and each 6-h period, to account for the seasonal

and diurnal variability of the precipitation process.

3. The Gibbs sampling disaggregation model

a. Notation

Let (x, y) 2 D XY and (i, j) 2 D IJ denote the locations in

Cartesian coordinates of the coarse-scale and fine-scale pixels,

respectively, where D XY 5 f(1, 1), . . . , (X, Y)g and D IJ 5
f(1, 1), . . . , (I, J)g represent the coarse- and fine-scale grids,

respectively. In our case study previously described, X 5 Y5
16 while I 5 J 5 64. We define the coarse-scale precipitation

random field C5 fC(x,y): (x, y) 2 D XYg, from which a realiza-

tion is available from a NWP or a climate prediction model,

and the fine-scale random field R5 fR(i,j): (i, j) 2 D IJg from

which a realization (i.e., a downscaled field) is desired. Let us

further consider a fine-to-coarse coordinate mapping func-

tion F :D IJ /D XY , defined as F (i, j)5 (x, y), which maps

every fine-scale location to the coarse-scale location it be-

longs to. This function is to be defined by every user, de-

pending on their own downscaling setup (scaling ratio,

overlapping of the fine- and coarse-scale grids, etc.). We also

setG(x,y) for (x, y) 2 D XY as the number of locations (i, j) that

satisfy F (i, j)5 (x, y). Except maybe at boundaries of the

downscaling domain, G(x,y) is likely to be constant for all

(x, y).

b. Markov assumption and Gibbs sampling

The downscaling problem can be expressed as finding a re-

alization ofR that satisfies the constraint of conservation of the

mean rain rate:

1

G
(x,y)

�
(i,j):F (i,j)5(x,y)

R
(i,j)

5C
(x,y)

, (1)

for every coarse-scale location (x, y) 2 D XY . However, the

problem as such is ill-defined, as there is an infinite ways of

defining a joint distribution p(R) that satisfies the constraint

(1). The idea of the GSDM is to assume some form of Markov

properties in the field R, such that p(R(i,j)jR2R(i,j)
), the condi-

tional distribution of the pixel R(i,j) given all other pixels, can

be approximated by p(R(i,j)jN(i,j)), where N(i,j) is the subset

of R containing only the neighboring pixels of R(i,j) (but not

R(i,j) itself). The definition of the conditional distribution

p(R(i,j)jN(i,j)), which is the core of the GSDM, will be described

in details in sections 3c and 3d. For now, assume that a statis-

tical model for p(R(i,j)jN(i,j)) exists, and let G(i,j) be the corre-

sponding cumulative distribution function (CDF).

The procedure for obtaining a realization of the complete

field R is based on the Gibbs sampling, an iterative algorithm

that allows to sample a realization of a process whose joint

distribution is unknown but the conditional distributions of

every element are known [for a good introduction, see Casella

and George (1992)]. Of course, none of the elements in N(i,j)

are known initially, but the Gibbs sampling iteratively updates

every pixel of the field (leaving the others unchanged) such

that, when it is time to update a given pixel R(i,j), its neigh-

borhood N(i,j) is ‘‘realistic.’’ The algorithm, as proposed by

Gagnon et al. (2012), can be described as follows:

Step 0. Iterate over all locations (i, j) 2 D IJ and initialize

R(i,j) with the value of the coarse-scale pixel it belongs to:

R
(i,j)

)CF (i,j)
.

Step 1. Iterate over all locations (i, j) 2 D IJ and updateR(i,j)

by sampling a value from its conditional distribution:

R
(i,j)

)G
(i,j)
21(u)

where u is randomly drawn from U(0, 1).

Step 2. Iterate over all locations (x, y) 2 D XY and com-

pute the coarse-scale multiplicative coefficients a(x,y) de-

fined as

a
(x,y)

5

 
1

G
(x,y)

�
(i,j):F (i,j)5(x,y)

R
(i,j)

!
=C

(x,y)
.

Once the X 3 Y coefficients a(x,y) are stored, iterate

over all locations (i, j) 2 D IJ and adjust R(i,j) such that
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the constraint of mean rain rate conservation expressed

in (1) is satisfied:

R
(i,j)

)aF (i,j)
R

(i,j)
.

Step 3. RepeatNiter times the steps 1–2.After the last iteration,

extract the final downscaled field R5 fR(i,j): (i, j) 2 D IJg,
replacing by zero all R(i,j) that are smaller than a certain

threshold, e.g., 0.1mm per 6 h.

An important point in the above algorithm is, for a down-

scaling purpose, the possibility to introduce the adjustment

for conservation of the mean rain rate (step 2) after every

Gibbs sampling iteration. Thanks to this recurrence, and be-

cause the distributions p(R(i,j)jN(i,j)) are on average centered

around the mean of N(i,j) (see section 3c), the multiplicative

coefficients a(x,y) are typically close to 1, such that the effect on

the spatial structure is negligible. In numerous downscaling

methods proposed in the literature, this volume adjustment can

only be performed at the very end of the process, often with a(x,y)

substantially different from1,which causes a noticeable blockiness.

According to the theory of the Gibbs sampling, if Niter is

large enough, and assuming that the effect of step 2 is negligible

on the spatial structure, the final field R should be a statistical

sample of the joint distribution p(R). However, tracking the

convergence of the Gibbs sampler is not straightforward.

Although Gagnon and Rousseau (2014) recommend Niter 5
300, there appears to be no good ‘‘rule of thumb’’ for fixing

a number of iterations that is appropriate to every context

(Raftery and Lewis 1992). A second difficulty lies in defining

and calibrating a model for p(R(i,j)jN(i,j)) that accounts for all

sources of spatial variability such that the implicit p(R), to

which the Gibbs sampling converges, has the desired spatial

properties. Gagnon et al. (2012) recommend to fit p(R(i,j)jN(i,j))

to every nonzero pixel R(i,j) in the set of fine-scale training

analyses, but considering the neighboring pixelsN(i,j) as known

(i.e., no Gibbs sampling). However, any misrepresentation

of a spatial characteristic in this conditional distribution

model, albeit small, can then be amplified to the point that

the final field R becomes strongly unrealistic. An example is

given in Fig. S1 in the online supplemental material, where

the Gibbs sampling converges to a field exhibiting aniso-

tropic ‘‘stripes’’ that are unrealistically sharp and spaced,

although the model for p(R(i,j)jN(i,j)) has been properly fit-

ted to the training data.

To circumvent these issues, we propose a novel use of the

algorithm described above, where instead of waiting for the

Gibbs sampling to converge, we predefine a relatively small

value for Niter, and calibrate the model for p(R(i,j)jN(i,j)) such

that the field R after Niter iterations has the desired texture.

We acknowledge that proceeding this way is not fully in line

with the Gibbs sampling theory, in that convergence to the

implicitly defined joint distributionmodel is no longer themain

objective. However, our more pragmatic approach, of using

the Gibbs sampling simply to generate subgridscale vari-

ability that is informed by meteorological predictors and

matches observed spatial structures, has two major benefits.

First, the risk of generating strongly unrealistic fields is

greatly reduced, as the parameters of the model control the

texture of the final fields (i.e., after the Gibbs sampling).

Second, the computational cost for running the algorithm,

which is directly proportional to Niter, is drastically reduced.

For this study, satisfying results were found with Niter 5 10,

which is at least an order of magnitude smaller than what the

algorithmwould have required to converge. The performance

will eventually deteriorate for smaller Niter, however it was

not found to improve much for higher Niter, whereas the

computational cost increases. Note that users with a different

downscaling setup, e.g., a higher scaling ratio, may require

more iterations for a realistic spatial structure to establish,

hence we recommend a trial-and-error process for fixing a

suitable Niter value.

The calibration procedure of this revised GSDM thus con-

sists in matching the full downscaled fields (obtained after

Niter iterations of the Gibbs sampling) with their verifying

analysis, and search for the set of parameters of the model for

p(R(i,j)jN(i,j)) that minimizes the averaged difference in texture

between the two. Denoting the sets of downscaled and analysis

fields by {R1, . . . , RM} and fRobs
1 , . . . , Robs

M g, respectively, with
M the number of fields in the calibration period, the actual

quantity being minimized, referred to as the cost function, can

be defined as

L 5
1

M
�
M

m51

L (R
m
,Robs

m ), (2)

where L is a loss function that quantifies the difference in

texture between two rainfall fields. This loss function can be

specific to each user, depending on which aspects of the texture

they are most interested in reproducing.We propose one in the

section 4 of this article, based on the concept of gridded,

stratified variogram. It is important to note that, because of the

stochasticity of the Gibbs sampling, L is itself a random

quantity, which requires specific precautions for its minimiza-

tion. These are discussed in the appendix. Moreover, since the

entire set {R1, . . . ,RM} is required for a single evaluation ofL ,

it is strongly recommended, for the calibration procedure to

remain affordable, to optimize the Gibbs sampling code for

fast computation. For this study, the algorithm was coded in

Python but optimized using the just-in-time compiler Numba

(Lam et al. 2015).

c. Standard model for p(R(i,j)jN(i,j))
Now that the Gibbs sampling algorithm has been described,

we detail the methodology for modeling the conditional dis-

tribution p(R(i,j)jN(i,j)). We largely follow the convenient sta-

tistical framework proposed by Gagnon et al. (2012), although

a number of modifications are suggested to address some

limitations in the original model.

The general idea is to assume that the nonzero values ofR(i,j)

follow a parametric distribution with expectation E(i,j) and

standard deviation SD(i,j), which will be expressed as a function

of the neighboring pixels and/or meteorological predictors via

two regression models. The lognormal distribution is assumed

here, and its parameters m(i,j) and s(i,j) (i.e., the mean and

standard deviation of the variable’s logarithm) are related to

E(i,j) and SD(i,j) via
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m
(i,j)

52
1

2
ln

 
E2

(i,j) 1SD2
(i,j)

E4
(i,j)

!
, (3)

s
(i,j)

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

 
11

SD2
(i,j)

E2
(i,j)

!vuut . (4)

Note that while the lognormal distribution is frequently used

for modeling nonzero precipitation data, the Gamma distri-

bution is a relevant alternative too, which has been found by

Gagnon et al. (2012) to give similar results. If the latter (or any

other distribution) is to be chosen, Eqs. (3) and (4) must be

adapted accordingly, but the rest of the methodology remains

unchanged. The main step then consists in defining regression

models forE(i,j) and SD(i,j). This section describes a ‘‘standard’’

version, where regression models do not involve any meteo-

rological predictors yet.

Based on the assumption of Markov properties in the rain-

fall field, the expectation E(i,j) can be expressed as a linear

combination of the neighboring pixels. As a trade-off between

parsimony and ability to account for anisotropy, the neigh-

borhood is restricted to the eight nearest pixels. Since north-to-

south and south-to-north anisotropies are indistinguishable

when looking at a rainfall field, and likewise for the other

directions, the information in the eight neighboring pixels

can be reduced to four directional averages defined as

A
j
(i,j) 5 (R(i,j21) 1R(i,j11))/2, A

2
(i,j) 5 (R(i21,j) 1R(i11,j))/2, A

/
(i,j) 5

(R(i21,j21) 1R(i11,j11))/2, and A\
(i,j) 5 (R(i21,j11) 1R(i11,j21))/2,

with A(i,j) the average of the four. Cases where (i, j) is at the

boundary of the domain are dealt with field mirroring. The

authors have then proposed a formulation that expresses E(i,j)

as a linear combination of these quantities, in a way that the

different terms are easily interpretable:

E
(i,j)

5A
(i,j)

1b
d

 
A

j
(i,j) 1A2

(i,j)

2
2

A/
(i,j) 1A\

(i,j)

2

!

1b
3
(A/

(i,j) 2A\
(i,j))1b

1
(A

j
(i,j) 2A2

(i,j)). (5)

The first term A(i,j) has a coefficient fixed to 1, such that E(i,j)

stochastically tends to the neighborhood mean and thus en-

sures that multiplicative coefficients a(x,y) in the Gibbs sam-

pling remain close to 1 (see section 3b). The second term,

referred to as the distance term, aims at increasing the corre-

lation between R(i,j) and its 4 nearest neighbors (left, right,

above, and below) with respect to the correlation with the four

others (in the diagonals). The coefficient bd is thus expected to

have a positive value. Finally, the third and fourth terms ac-

counts for potential anisotropy. Assuming (here and through-

out the article) that 08 points to the east, the coefficient b3 (b1)

should be positive if the anisotropy is stronger in the 458 (908)
than in the 2458 (08) direction. The combination of the two

parameters b3 and b1 thus controls simultaneously the di-

rection and strength of the anisotropy.

A second regression model must then be defined for the

standard deviation SD(i,j), which is tightly related to the spatial

variability of the downscaled field. If SD(i,j) is small, the proba-

bility of sampling a new value ofR(i,j) that is much different from

E(i,j) will be small, as the conditional distribution p(R(i,j)jN(i,j)) is

tight aroundE(i,j). This will enforce a strong spatial dependence,

typically seen in winter. In summer, SD(i,j) is expected to be

larger, increasing the spatial variability. Apart from the seasonal

variability, it is further assumed that SD(i,j) increases with

E(i,j). We here propose the two-parameter linear model

SD
(i,j)

5b
s1
1b

s2
E

(i,j)
, (6)

which has been found to perform slightly better than the

nonlinear relationship SD(i,j) 5bs1
E

bs2

(i,j) suggested by the origi-

nal authors.

The regression model for E(i,j) formulated in Eq. (5) is re-

ferred to as E30, where the first digit indicates the number

of free parameters to estimate (bd, b3, and b1 here), while

the second digit indicates the number of meteorological pre-

dictors (none here). Similarly, the model for SD(i,j) in Eq. (6)

can be referred to as S20. Alternative models will be proposed

in the next section, keeping the same terminology. The asso-

ciation of two regression models, one for E(i,j) and one for

SD(i,j), will be referred hereinafter to as a GSDM variant. The

one described above, namely, E30–S20, has been found to be

the most skillful variant that does not rely on any meteoro-

logical predictors.

d. Alternative models for E(i,j) and SD(i,j)

The equations of the different alternative models of E30 and

S20 are given in Tables 2 and 3, respectively. For a better grasp

of how the models differ from one another, Fig. 1 illustrates,

for a given validation date, the downscaled fields obtained with

all possible combinations of models.

For the expectation E(i,j), models E00 and E10 are intro-

duced as direct simplifications of E30, with the objective of

assessing the importance of the distance and the anisotropy

terms. In Fig. 1, by comparing E10 to E00 the impact of the

distance term is limited but yet detectable, with rainfall fea-

tures being slightly more structured. However, by comparing

E30 to E10 the effect of the anisotropy terms is striking. The

fields now show distinct anisotropic features oriented north-

east, which is the preferential direction in this area for that

period of the year. With model E30, it is indeed expected that

all downscaled fields in validation reproduce the dominant

anisotropy shape observed in calibration (in other words, the

‘‘climatological anisotropy’’). However, the date selected in

Fig. 1 is an example where the anisotropy departs from its

climatology, with features in the original analysis field that are

oriented northwest. This misrepresentation could have dra-

matic effects on hydrological modeling, for instance if a

catchment is oriented in the same direction—or not—as the

rainfall features.

To address that issue, models E21 and E32 introduce me-

teorological predictors. First, it should be noted that aniso-

tropic features in a precipitation field can have two origins: the

spatial structure of instantaneous rainfall cells (e.g., a squall

line), and their advection through time. For the 6-h accumu-

lation period considered in this study, the advection prevails,

making any horizontal atmosphere motion vector a good pre-

dictor candidate, with its direction controlling the anisotropy
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direction while its magnitude controls the anisotropy strength.

Gagnon and Rousseau (2014) have used the wind vector at the

700-hPa pressure level. Here, we consider as candidates the

wind at 100, 200, 300, 400, 500, 600, 700, 775, 850, and 925 hPa,

the average wind in the lowest 6-km layer above ground level

(AGL), and finally the storm motion (Bunkers et al. 2000),

assuming right-movers only. These predictor fields are bi-

linearly interpolated to the fine scale. In the equations in

Table 2, PAD
(i,j) and PAS

(i,j) denote respectively the direction and

the magnitude, at location (i, j), of the predictor vector

being used. The model E21 includes PAD
(i,j) for controlling the

anisotropy direction, but relies on a free parameter ba for

the strength. The most complex model, E32, uses both PAD
(i,j)

and PAS
(i,j). It is very similar to the model proposed in Gagnon

and Rousseau (2014), except that an additional coefficient

ba1
has been introduced such that the model can reduce to

E21 in case PAS
(i,j) is not informative. For the specific date

shown in Fig. 1, the usefulness of E21 compared to E30 is

obvious, with anisotropic features much more similar to the

observed ones. However, the difference between E21 and

E32 is hard to notice on this isolated example, as it

requires a longer period to assess the informativeness

of PAS
(i,j).

Concerning the standard deviation SD(i,j), the alternative

model S10 is a direct simplification of S20, with the objective

of assessing the importance of the dependence of SD(i,j) to

E(i,j). In Fig. 1, this dependence term seems to render more

realistic the graininess of the fields. The more complex model

S31 then introduces a predictor, denoted PSV
(i,j), for controlling

the spatial variability. The convective available poten-

tial energy (CAPE), introduced in the GSDM by Gagnon

et al. (2012), may at first glance seem a pertinent predictor.

Perica and Foufoula-Georgiou (1996a) also found a strong

relationship between CAPE and the scaling parameters of

their statistical model for describing the rainfall spatial vari-

ability. However, their relation was established only for a

sample of ‘‘pre-storm’’ values of CAPE (i.e., that are not con-

taminated yet by convection), although CAPE is susceptible to

drop rapidly after convection has started. In our downscaling

context, ensuring that all CAPE values used as predictor re-

flect the environment prior to storms seems unrealistic; hence

a series of alternative predictors are tested, which are catego-

rized into two groups.

The first group contains thermodynamic indices of the at-

mosphere instability: CAPE and convective inhibition (CIN),

as computed by the ECMWF model (it is actually the most

unstable CAPE, and the minimum CIN; see Tsonevsky et al.

2018), but also the Showalter index (SI; Showalter 1947), lifted

index (LI; Galway 1956), and total totals index (TT; Miller

1975). The hypothesis is that the atmosphere instability is as-

sociated with a risk of convection and then a higher spatial

variability of rainfall, hence we assume a positive relationship

between SD(i,j) and the above indices, except SI and LI for

which a negative relationship is assumed (lower values are

associated with higher instability). The second group gathers

kinematic predictors: storm relative helicity (SRH;Markowski

and Richardson 2011) in the lowest 1- and 3-km layers AGL;

the bulk Richardson number (BRN) shear; the vertical wind

shear in the following layers: surface (sfc)–925, sfc–850, sfc–

700, sfc–500, sfc–300, sfc–200, 850–700, 850–500, 850–300,

850–200, 700–500, 700–300, and 700–200 hPa; and finally, the

wind speed predictors already used as candidates for the

anisotropy strength. For all these kinematic predictors, a

negative relationship with SD(i,j) is assumed. For instance,

a strongly sheared environment may be associated with

TABLE 3. List of all regression models that are tested for the

standard deviation SD(i,j).

Name Regression model

S10 SD(i,j) 5 bs

S20 SD(i,j) 5bs1
1bs2

E(i,j)

S31 SD(i,j) 5bs1
1bs2

PSV
(i,j) 1bs3

E(i,j) (positivea)

SD(i,j) 5bs1
exp

�
2

bs2

bs1

PSV
(i,j)

�
1bs3

E(i,j) (negativea)

a Refers to the assumed relationship between SD(i,j) and PSV
(i,j);

see text.

TABLE 2. List of all regression models that are tested for the expectation E(i,j).

Name Regression model

E00 E(i,j) 5A(i,j)

E10 E(i,j) 5A(i,j) 1bd

" 
A

j
(i,j) 1A2

(i,j)

2

!
2

 
A/

(i,j) 1A\
(i,j)

2

!#

E30 E(i,j) 5A(i,j) 1bd

" 
A

j
(i,j) 1A2

(i,j)

2

!
2

 
A/

(i,j) 1A\
(i,j)

2

!#
1b3(A

/
(i,j) 2A\

(i,j))1b1(A
j
(i,j) 2A2

(i,j))

E21 E(i,j) 5A(i,j) 1bd

" 
A

j
(i,j) 1A2

(i,j)

2

!
2

 
A/

(i,j) 1A\
(i,j)

2

!#
1ba(cos[2(P

AD
(i,j) 2 458)](A/

(i,j) 2A\
(i,j))

1 cos[2(PAD
(i,j) 2 908)](Aj

(i,j) 2A2
(i,j)))

E32 E(i,j) 5A(i,j) 1bd

" 
A

j
(i,j) 1A2

(i,j)

2

!
2

 
A/

(i,j) 1A\
(i,j)

2

!#
1 (ba1

1ba2
PAS
(i,j))(cos[2(P

AD
(i,j) 2 458)](A/

(i,j) 2A\
(i,j))

1 cos[2(PAD
(i,j) 2 908)](Aj

(i,j) 2A2
(i,j)))
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FIG. 1. (a) Example of a precipitation analysis field (1 Apr 2015, 1200–1800 CST). (b) Corresponding coarse-scale field after aggre-

gation. (c) Result of the bilinear interpolation. (d1)–(d15)Results of the downscalingwith all possible variants of theGSDM.The different

regression models for E(i,j) are in rows, while the different regression models for SD(i,j) are in columns. For all downscaled fields, the

difference L in texture with the analysis field is reported, as well as the values of the indices ADI, ASI, and SVI.
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stratiform precipitation within a frontal activity, but also

with strongly organized convection. In both cases, the spa-

tial variability of rainfall is expected to be lower, compared

to weakly sheared environments where thunderstorms can

develop but die out quickly (the falling rain killing off the

vertical updraft), leading to spatially scattered rainfall

features.

Therefore, the variety of candidate predictors for PSV
(i,j)

requires two forms of model S31 (Table 3). The ‘‘positive’’

model assumes an increasing linear relationship (nonlinear

models were not found to perform better), while the

‘‘negative’’ model is constructed such that SD(i,j) decreases

asymptotically with PSV
(i,j) but remains positive. Note that

Fig. 1 does not show much on the difference between S31

and S20, as a longer period is required to assess the infor-

mativeness of PSV
(i,j).

4. Quantifying the texture of a rainfall field
We now describe the concept of a gridded, stratified vario-

gram, as a way of quantifying the texture of a rainfall field. This

will be used for defining the loss functionL , but also indices of

specific aspects of the texture.

a. The choice of the mathematical tool

With stochastic downscaling methods, like the GSDM, the

spatial position of the fine-scale details is somewhat random,

meaning that a pixel-by-pixel comparison is inadequate when

confronting the downscaled fields to their verifying analysis.

Instead, it is expected that the downscaled fields reproduce

the probabilistic spatial structure of these details, a notion that

we can refer to as texture. In the field of spatial verification

(Gilleland et al. 2010), different approaches have been em-

ployed to quantify the texture of a precipitation field. The

most intuitive mathematical tool, the spatial autocorrelation

function, has been used in the context of downscaling by

Ferraris et al. (2003) and Raut et al. (2018), among others.

Over a finite domain, the autocorrelation can be expressed

as a function of the distance (the ‘‘lag’’), and eventually the

direction, only under the condition of second-order statio-

narity. Marzban and Sandgathe (2009) advocate for using the

variogram instead, as it requires a weaker assumption called

intrinsic stationarity. The variogram has been used for pre-

cipitation fields by, among other, Achberger et al. (2003), He

et al. (2016), and Ekström (2016). Finally, a third mathematical

tool for texture analysis has been subject of active research in

the recent years (see Weniger et al. 2017): the redundant dis-

crete wavelet transform (RDWT), and more specifically its

energy spectrum, which requires an even weaker assumption

called local stationarity. Following the theory provided by

Eckley et al. (2010), the approach has been used by Weniger

et al. (2017), Kapp et al. (2018), Buschow et al. (2019), and

Brune et al. (2018). Despite a number of appealing properties,

the wavelet approach suffers from a number of limitations.

First, the application of the RDWT implies the downscaling

domain to be dyadic, as well as to deal with the boundary

conditions. Moreover, the power spectrum accounts for

anisotropy only to a certain extent, quantifying the energy

in the vertical, horizontal, and diagonal directions only

(with up and down diagonal indistinguishable). Finally, a

necessary bias correction of the spectrum, due to the re-

dundancy of the wavelet transform, allows the energy in

the smallest scales to be negative. Because of the lack of

physical interpretation, some of the above-cited references

simply discard the smallest scales. In our context, however,

the fine-scale details of the downscaled fields are of prime

interest, so ignoring the smallest scales is not an option.

For all these reasons, we have found the variogram, which

we briefly introduce below, to be the best suited mathe-

matical tool for quantifying the texture of fine-scale precipi-

tation fields.

Consider h 2 R2 any Euclidean vector with jjhjj 2 [h 2 d,

h 1 d], where h is a given distance (spatial lag) and d a fixed

tolerance. We define Sh 5 {(i, j) : R(i,j) . 0, R(i,j)1h . 0, jjhjj 2
[h 2 d, h 1 d]} the set containing all locations (i, j) such that

both R(i,j) and R(i,j)1h exist and are positive, with #Sh being

the number of elements in that set. The function

1

2#S
h

�
(i,j)2Sh

(R
(i,j)

2R
(i,j)1h

)2

is known as the empirical, omnidirectional, semivariogram

(called simply variogram hereinafter) of the field R. It de-

pends only on the lag h under the assumption of intrinsic sta-

tionarity and isotropy of R. The restriction in Sh to wet pixels

aims at evaluating the texture independently of the location

of the rainfall features, as recommended by Marzban and

Sandgathe (2009).

b. The gridded, stratified variogram
Several suggestions are proposed to generalize the above

formulation. To help the understanding, Fig. 2 provides an il-

lustration based on a concrete example. First, we introduce a

prior power transformation, to obtain the transformed field

R~ containing the pixels R~(i,j) 5Rl
(i,j) for (i, j) 2 D IJ (Fig. 2a).

Computing the variogram on transformed fields with a power

l, 1 is a common practice for precipitation (e.g., Schuurmans

et al. 2007; Erdin et al. 2012), as a way to reduce the skewness

of the variable and thus the strong sensitivity to cases with

large precipitation amounts. We also use a variant of the

variogram where the squared differences are replaced by

absolute differences, thereby reducing the influence of a few

large pairwise differences in the fields, and thus increasing

robustness to outliers (Cressie and Hawkins 1980). While this

variant is sometimes referred to as madogram, we will keep

using the more general term variogram throughout the arti-

cle. Then, to account for anisotropy we propose a gridded

computation of the variogram, replacing the vector h by

(Di, Dj) for Di, Dj 5 (2L, . . . , L), where L 2 N is called the

window size. Every combination of Di and Dj thus accounts
for a specific lag and direction (Fig. 2b). Finally, while

Marzban and Sandgathe (2009) recommend to restrict to

pairs of wet pixels, we expand the approach to quantifying

the variogram for different ranges (called ‘‘strata’’) of

precipitation, where K 2 N is the number of strata. The

rationale is that precipitation at location (i, j), when plotted

against precipitation at another location (i 1 Di, j 1 Dj),

NOVEMBER 2020 BELL I ER ET AL . 2495

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/12/21 04:21 PM UTC



may show heteroscedasticity. The nonstratified variogram,

by summing over all pairwise differences, reduces the

spatial dependence to a single number, and thus loses the

information about heteroscedasticity. With stratification,

the degree of heteroscedasticity is reported by the extent to

which the variogram values differ between strata (Fig. 2c).

Now that all concepts have been introduced, we define the

gridded, stratified variogram of the transformed field R~ as the

quantity

g;
R
(Di,Dj,k)5

1

2#S
Di,Dj,k

�
(i,j)2SDi,Dj,k

jR~
(i,j)

2R~
(i1Di,j1Dj)

j (7)

for Di, Dj 5 (2L, . . . , L) and k 5 (1, . . . , K), where

S
Di,Dj,k

5 (i, j) : q̂
(k21)/K

,R
(i,j)

# q̂
k/K

,R
(i1Di,j1Dj)

. 0
n o

, (8)

with q̂(k21)/K and q̂k/K respectively denoting the (k2 1)th and

kth empirical K quantile of the population of nonzero

values in R. In the definition (8), the range of value is im-

posed on R(i,j) only, such that the stratification of the pair-

wise differences is mutually exclusive but collectively

exhaustive. The final gridded stratified variogram is illus-

trated in Fig. 2d.

c. Application to the loss function L
Based on the definition (7), we can define a loss function L

as the mean of the absolute errors between the g values:

L (R,Robs)5
1

K(2L1 1)2
�
K

k51
�
L

Di52L
�
L

Dj52L

jg;
R (Di,Dj,k)

2 g;
Robs (Di,Dj,k)j, (9)

whereR andRobs are a downscaled field and its corresponding

verifying analysis, respectively. This function thus quantifies

the overall difference in texture between the two fields, inde-

pendently of the spatial position of the fine-scale features.

Introducing (9) into (2) we obtain the cost function L being

minimized through the calibration process, which averages L
over all pairs of downscaled and analysis fields in the calibra-

tion set. In section 5, the same cost functionL will be used as a

verification metric, and in such case it is computed over the

validation set.

Note that for any k 5 (1, . . . , K), we have g;
R
(0, 0, k)5 0,

but also due to the symmetry of the anisotropy we can rea-

sonably assume g;
R(Di, Dj, k) ’ g;

R(2Di, 2Dj, k) (the strict

equality holding only for infinitely large domains because of

the stratification). Consequently, the computation of L can

be sped up by only averaging over K(2L2 1 2L) g values

instead of K(2L 1 1)2, which is important for calibration

purpose.

The loss function L has three tuning parameters, l, K, and

L, which must be determined through trial and error. This

involves a part of subjective judgment, with the objective of

reproducing in the function the ability of human eyes for de-

tecting differences of texture. We have found l 5 0.5 (square

root transformation), K 5 3, and L 5 1 leading to the most

realistic downscaled fields. Considering such a short window

size L may seem counterintuitive because only short lags are

evaluated, but on the other hand all the effort in calibration is

then put into matching the variogram for these short lags,

which are known inMarkovian fields to have the strongest link

with the texture. Furthermore, longer lags will eventually be

fully constrained by the coarse-scale conditioning, hence their

evaluation within L becomes unnecessary. As a practical

consideration, setting L 5 1 also reduces to its minimum the

FIG. 2. Illustration of the construction of the gridded, stratified variogram for a given fine-scale precipitation fieldR, with parameters

l 5 0.5, K 5 2, L 5 2. (a) Power-transformed field R~. (b),(c) Unstratified and stratified scatterplots of all pairs of wet pixels

separated by (Di, Dj) 5 (1, 21) in the top panels and (Di, Dj) 5 (2, 1) in the bottom panels. These are only two examples among all

(Di, Dj) for Di, Dj 2 (1, . . . , L). (d) The gridded, stratified variogram. The values displayed as text correspond to the two vectors

(Di, Dj) taken as example.
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number of g values that need to be computed for evaluating

L , which directly affects the computational cost of calibration.

Finally, note that the function L is not fully differentiable

because of the use of absolute differences, but this issue is

circumvented by the use of a derivative-free optimization al-

gorithm (see appendix).

To illustrate the discrimination capabilities of L with the

above parameters, Fig. 1 provides, for the example date dis-

cussed earlier, the value of L (R, Robs) for every downscaled

field R obtained with a specific GSDM variant. We observe

that, as the regression models complexify, the difference in

texture with the analysis field Robs decreases, the lowest being

here obtained with the variant E32–S31.

d. Application to indices of specific aspects of texture
Quantifying the texture as a whole is useful for calibration.

For validation though, it can also be of interest to identify

specific attributes of the texture, and evaluate them separately.

In this section, we propose novel indices that extract specific

information from the gridded variogram. The stratification is

here removed (K 5 1) to reduce the amount of information,

while the window size is increased (L . 1) to better quantify

the anisotropy characteristics. The first step is to transform the

gridded variogram, i.e., the set of values g;
R(Di, Dj) for Di, Dj5

(2L, . . . , L), to a so-called ‘‘lag-direction’’ variogram denoted

t;R(h, u), where h and u denote the lag and the direction, re-

spectively. Using trigonometry, the mapping from g to t is

straightforward [e.g., g;
R(1, 1)5 t;R(

ffiffiffi
2

p
, 458)], and is illus-

trated in Figs. 3a,b. Let us also denote by Q the finite set of

u values for which t;R(h, u) can be computed. To further syn-

thesize the information, we then reduce the variogram curve

for every direction u 2 Q to a single number, assuming a fixed

lag h 5 D. The variogram values at combinations (D, u) that

are not directly available from the gridded variogram are

obtained via linear interpolation (see Fig. 3b). Finally, the

function t;R(D, u), available for the directions u 2 Q, can be

plotted on a polar plot to provide a clear picture of the an-

isotropy (Fig. 3c). Concerning the choice of D, we need to

compromise between short lags that convey more informa-

tion about the texture, while being large enough to allow

the vector Q to contain a larger variety of directions, and

thus better characterize the anisotropy. We here suggest

D5
ffiffiffi
5

p
, which is the shortest lag for which one can derive

t;R(D, u) for eight different directions: Q5 {908, 638, 458, 278,
08, 2278, 2458, 2638}. Due to symmetry we have t;R(h, u)5
t;R(h, u6 1808), hence only a half circle is necessary for

representing the function t;R(D, u). One can note that

D5
ffiffiffi
5

p
implies computing the gridded variogram withL5 3,

although not all values are actually necessary (see Fig. 3a).

For the parameters l, the same value (l5 0.5) as for the loss

function is used.

Now that the function t;R(D, u) has been defined, we pro-

pose three indices that summarize specific information about

the texture:

ADI
R
5 argmin

u2Q
t;
R
(D, u), (10)

ASI
R
5

max
u2Q

t;
R
(D, u)

min
u2Q

t;
R
(D, u)

, (11)

SVI
R
5min

u2Q
t;
R
(D, u). (12)

The anisotropy direction index (ADI) is simply the preferen-

tial direction (in degrees) of the anisotropy, that is, the direc-

tion where precipitation is most correlated. It can only take

values in Q. The second index, the anisotropy strength

index (ASI), quantifies the degree of anisotropy. It takes

values in [1, 1‘[, with 1 corresponding to isotropy. Finally,

the small-scale variability index (SVI) aims at quantifying

the spatial variability independently from the anisotropy,

by extracting the variogram value in the preferential di-

rection. It takes values in R1, with large values associated

with high spatial variability. The values of ADI, ASI, and

SVI are given in Fig. 1 for the example fields. One can then

revisit the qualitative comments made in section 3d, about

FIG. 3. Illustration of the construction of the indices ASI,ADI, and SVI, for the same field as in Fig. 2, with parameterD5
ffiffiffi
5

p
. (a)Gridded

(unstratified) variogram, where only the values displayed as text are actually necessary. (b) Equivalent ‘‘lag-direction’’ variogram, where

filled circles represent the values directly available from the gridded variogram, while empty circles represent interpolated values at lag h5D.

(c) Corresponding directional variogram, as a plot of the variogram values at lag h 5 D only. (d) Values of the indices.
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the specific effects of each regression model, in the light of

these quantitative measures.

For constructing verification metrics, these three indices are

computed on each analysis and downscaled fields over the

validation period, and the root mean squared error (RMSE) is

considered. In the next section, we will refer to these metrics as

RMSEADI, RMSEASI, and RMSESVI. Note that because ADI

is an angle, the mathematical formulation of differences in the

equation of RMSEADI must be adapted to circular data.

As a concluding remark, the computation of both the loss

function L and the indices ADI, ASI, and SVI requires that

the rainfall fields have enough nonzero pixels for the estima-

tion of the g values to be robust. In this study, an arbitrary

threshold of 10% was applied to the analysis fields, that is, all

pairs {R, Robs} with less than 10% of nonzero pixels in Robs

were discarded from the computation of the metrics.

5. Results and discussion

a. Choice of the best meteorological predictor
Prior to evaluating the performances in validation of the dif-

ferent GSDM variants, we discuss the choice of the predictors

used for controlling the anisotropy (in models E21 and E32)

and the spatial variability (inmodel S31). For a fair comparison

against the other models, the choice of the predictors must be

made from the calibration results only, that is, from the re-

ported minima of the cost function L after optimization.

Figure 4 shows the calibration results of the variant E32–S31

for each different anisotropy predictors tested. Recall that

these predictors are vectors, where the magnitude is used

for controlling the anisotropy strength (in model E32 only) and

the direction for controlling the anisotropy direction. The left

plot, which aggregates L over all months and 6-h period,

shows that the wind at the 600-hPa pressure level is the best

predictor overall, followed closely by the wind at 700 hPa,

which was used by Gagnon and Rousseau (2014), and the av-

erage wind in the 0–6-km layer AGL. The results for every

month and 6-h period (right plot) indicate, though, that it is

not systematically the same predictor that performs best, even

if it is difficult to derive a physical interpretation as the vari-

ability seems to be caused by randomness (due to the finite size

of the calibration sample) more than related to the season or

time of the day. Figure 5 now shows the results of the same

experiment but for the predictors controlling the spatial vari-

ability. The vertical wind shear between the surface and the

850-hPa pressure level is found to be the best predictor overall

(left plot), but a series of other candidates perform only slightly

worse. When looking at the detailed results (right plot), unlike

for the anisotropy predictor, a distinguishable pattern is visible.

Some indices of the atmosphere instability (CAPE, SI, LI) tend

to be selected as the best predictor during the wintermonths, as

well as for the 0000–0600 CST period in summer, that is, when

convection has most often not started yet. During the con-

vective 6-h periods, kinematic predictors (wind speed, wind

shear) are more informative, as they are less affected by con-

vection. The pressure levels at which the kinematic predictors

are selected also vary, although it is again difficult to derive a

robust physical interpretation.

To conclude, these results show that, beyond a certain ran-

dom variability, a pattern for the type of predictor that per-

forms best for each season and time of the day exists, which can

potentially be leveraged by the GSDM. On the other hand,

setting a framework that picks up different predictors is costly,

both in terms of meteorological data access and calibration

time. For operational reasons, it can thus be desirable for the

downscaling method to restrict to a single set of predictors.

Therefore, in what follows we present the results for (i) the

models E21, E32, and S31, which uses the optimal predictor

overall (wind 600 hPa for E21 and E32; wind shear sfc–850 hPa

for S31), and (ii) the models E21B, E32B, and S31B, which pick

the best predictor for every month and 6-h period.

b. Validation results

For comparing the performance of the different GSDM

variants, the metricL is computed over the validation period.

As the downscaling process is stochastic, 10 downscaled field

‘‘members’’ are generated for every date, and the ensem-

ble mean of the metric is reported. As a benchmark, the per-

formance of the bilinear interpolation method is also reported.

Monthly results are aggregated by seasons: winter (DJF),

spring (MAM), summer (JJA), and fall (SON). To assess the

significance of the results, we conduct the following statistical

FIG. 4. Calibration results of the cost functionL for theGSDMvariantE32–S31, for different predictors controlling the anisotropy. The lower

L the better. (left) Results aggregated over all months and 6-h periods. (right) Results for every months and 6-h periods, with black crosses

indicating the best predictor. For this experiment, the predictor ‘‘wind shear sfc–850 hPa’’ is used for controlling the spatial variability.
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testing. Paired Student’s t tests are applied for rejecting—or

not—the null hypothesis of two variants having the same L .

To account for the multiplicity of statistical testing (all variants

are compared to each other), we apply the procedure recom-

mended by Wilks (2016) that consists in controlling the false

discovery rate (FDR; Benjamini and Hochberg 1995) at a

chosen level aFDR5 0.05, that is, we put a ceiling of 0.05 on the

statistically expected fraction of null hypotheses that were re-

jected although they were actually true. This testing is more

stringent, as it rejects all null hypotheses with p values inferior

to a threshold pFDR* (computed from the distribution of the

sorted p values) that is lower than aFDR. For more details, we

refer to Wilks (2016). From now, all the results that are re-

ported and discussed in the body of the text have been found

statistically significant according to this procedure. Figures S2–

S5 provide the outcomes of the statistical testing.

The performances of all GSDM variants are shown in Fig. 6.

As earlier, two distinct regimes with different results can be

observed: the winter season, which includes, to a certain

extent, the night and morning of the spring and fall seasons,

and the summer season. To help identify the deficiencies of

the different variants, Fig. 7 also provides, for 1200–1800

CST, the RMSE of the indices ASI, ADI, and SVI, which

specifically quantify the discrepancies in the anisotropy

strength, the anisotropy direction, and the spatial variability,

respectively.

During winter, a large gap in performance appears between

E00/E10 and E30/E21/E32, the first two models being strongly

penalized for not reproducing the anisotropy, which appears

to be the spatial characteristic of precipitation the most im-

portant to reproduce during that season. This finding is con-

firmed by Fig. 7, where RMSEASI is about twice as large for

E00/E10 than for E30/E21/E32, whereas they perform fairly

similar regarding the other indices. Moreover, we observe than

the predictor-based models E21/E32 are not significantly bet-

ter than E30 in winter. At first glance, this result could indicate

that the shape of the anisotropy for that season does not vary

enough from its climatology for these models to perform bet-

ter. However, further investigations (not shown) reveal that

there exist a number of cases where anisotropy is indeed

‘‘unusual’’ (e.g., the example shown in Fig. 1) and over which

the models E21/E32 do perform significantly better. The ma-

jority of cases are ‘‘usual’’ though, and in these cases E30 per-

forms slightly better. We conclude that in a regime where the

anisotropy shape rarely departs from its climatology, or/and

the anisotropy predictor is not informative, E30 should be

chosen over E21/E32, due to its simpler regression model.

Another finding is that E32 does not systematically out-

perform E21, meaning that the added value of wind speed

for controlling the anisotropy strength is limited, even when

the best predictor is picked (model E32B). In Fig. 7, we in-

deed observe that using the wind direction results in a sound

FIG. 5. As in Fig. 4, but for different predictors controlling the spatial variability. For this experiment, the predictor ‘‘wind 600 hPa’’ is used

for controlling the anisotropy.
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improvement regarding the ADI, but introducing the wind

speed does not improve regarding the ASI. Note that this result

is also valid for the summer period. Concerning the regression

models for the standard deviation SD(i,j), Fig. 6 indicates that in

winter themodels S10/S20 performaswell as the predictor-based

model S31. However, S31B significantly improves the perfor-

mance, at least for the 6-h periods where convection is most

likely to occur (1200–1800 and 1800–0000 CST). As discussed

earlier, S31 uses a kinematic predictor that has been found best

in overall, although in winter the most informative predictors

are indices of instability, which are used by S31B (Fig. 5).

Over the summer season, the conclusions differ to a cer-

tain extent. In Fig. 6 the large gap in performance is now ob-

served between S10/S20 and S31, which highlights the greater

FIG. 6. Validation results of the cost function L for all combinations of regression models for the expectation E(i,j) (y axis) and the

standard deviation SD(i,j) (x axis), plus the bilinear interpolation as a benchmark (in parentheses). The values of L are reported in

addition to the color scale. Models E32B, E21B, and S31B use the best predictors for every month and 6-h period, while models E32, E21,

and S31 use the best predictors overall. The combinations of both (gray areas) have not been tested.
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importance of the spatial variability over the anisotropy

for that season. This finding is confirmed by Fig. 7, where

RMSESVI for models S10/S20 is substantially higher than for

S31, although for the other indices the gap is invisible. We

further observe that S31 performs as well as S31B, which

indicates that the predictor used by S31, namely, the wind

shear sfc–850 hPa, is actually a robust choice for sum-

mer whatever the time of the day. Finally, it is found that

E10 significantly outperforms E00 in summer, which seems

to demonstrate that the distance term in the regression model

for E(i,j) plays an important role in reproducing the correct

spatial variability.

c. Discussion of the ability to reproduce field maxima
After having evaluated the ability of the GSDM to repro-

duce the correct texture, we finally assess its ability to repro-

duce the maximum over the entire domain, an aspect that

can be of interest for users interested in extremes. The down-

scaling process being stochastic, it is not expected that every

downscaled field maximum matches exactly the observed

FIG. 7. Validation results of the metrics (top) RMSEADI, (middle) RMSEASI, and (bottom)RMSESVI, over 1200–1800 CST. The values of

the metrics are reported in addition to the color scale.

FIG. 8. Verification rank histograms of the maximal precipitation value over the field, for the GSDM variants E30–S20 and E32–S31.
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maximum. However, a sample obtained from several different

Gibbs sampling runs should encompass the observed maxi-

mum in such a way that the simulated maxima are statistically

indistinguishable from the observed maximum. This prop-

erty, referred in the field of probabilistic forecasting to as

reliability (Jolliffe and Stephenson 2012), can be verified using

rank histograms, whose deviation from flatness indicates spe-

cific miscalibrations: underdispersion (< shape), overdispersion

(\ shape), underestimation (/ shape), and overestimation

(\ shape) [for caveats about this interpretation, see Hamill (2001)

and Bellier et al. (2017)]. Figure 8 shows the rank histograms

for the two most relevant GSDM variants, E30–S20 and

E32–S31. We observe an underdispersion for reproducing

the field maxima, with a strong tendency for underestima-

tion, especially in summer. The explanation for this finding

is twofold. First, as already mentioned in Gagnon et al.

(2012) it seems that the lognormal distribution chosen for

constructing the conditional distribution p(R(i,j)jN(i,j)) has a

right tail that is too light for correctly fitting the high values

of precipitation. If the reproduction of maxima is the most

important point of downscaling, we then suggest opting

for a heavier-tail distribution. Second, the GSDM has

been here calibrated for reproducing the correct texture,

but not particularly the field maxima. Indeed, the gridded,

stratified variogram used for constructing the loss func-

tion L , especially with the square root prior transforma-

tion (l 5 0.5, see section 4c), is relatively insensitive to

precipitation maxima, such that the calibration does not

penalize much the models for not reproducing them cor-

rectly. However, the revised GSDM proposed in this ar-

ticle is flexible in the sense that every user can define a loss

function that corresponds to their specific need. For re-

producing the precipitation maxima, although it is possi-

ble that using another value for l helps, we believe that

constructing a different loss function is necessary. It could, for

instance, encourage sporadic but steep gradients in the

downscaled fields, which in convective storms are generally

associated with precipitation extremes (Foufoula-Georgiou

et al. 2014).

6. Conclusions
Wehave reviewed theGibbs sampling disaggregationmodel

(GSDM), a precipitation spatial downscaling method origi-

nally proposed by Gagnon et al. (2012). The GSDM is capable

of introducing realistic, weather-dependent, and possibly an-

isotropic fine-scale details, while preserving the mean rain rate

over the coarse-scale pixels, without creating blockiness or any

other visual discontinuities. It can be applied to any down-

scaling setup, without constraints on the domain size or the

scaling ratio. The downscaling process consists in iteratively

updating the fine-scale pixel values by sampling from distri-

butions conditioned on the neighboring pixels, and parame-

terized via two regressions models (for the expectation and the

standard deviation). Three main novelties have been intro-

duced to this method.

First, a modification of the Gibbs sampling algorithm has

been proposed that ensures the downscaled fields to have a

similar texture to that of the analyses. Much fewer iterations

than in the original version are required, which drastically re-

duces the computational cost. To quantify discrepancies in

rainfall texture, a loss function based on the gridded, stratified

variogram has been proposed. Under the perspective men-

tioned in the introduction, namely, using the GSDMwithin the

U.S. National Blend of Models to recreate a coherent spatial

structure within postprocessed probabilistic forecasts, the

correct texture in the downscaled fields prevails. However, our

algorithm is flexible such that users with different interests

(e.g., correctly reproduce the precipitation maxima) can use

the GSDM with another loss function that is tailored to their

specific need.

Second, equations of various complexity were tested for

the two regression models, with the objective of assessing

the added value of each different term. Among all combi-

nations, two can be retained as the most relevant in per-

spective of an operational use. First, E30–S20 should be

chosen in case the use of meteorological predictors cannot

be afforded, or they are suddenly not available (e.g., failure

in data repatriation). Otherwise, the most sophisticated

variant E32–S31 is the best choice, as it reduces to less

complex models in case the predictors are not informative.

The only exception is when the predictor for the wind di-

rection is not informative; in that case E30 should be chosen

over E32.

Third, we have conducted an extensive test of various

meteorological predictors for controlling the rainfall field

anisotropy (strength and direction) and spatial variability.

For the anisotropy, which for 6-h accumulations is mainly

caused by the advection through time of the rainfall cells,

the best predictor all year round is the wind at 600 hPa. For

the spatial variability, instability indices such as CAPE, LI,

or SI were found most informative in winter (and during the

early hours of the day in summer), while kinematic predic-

tors such as the vertical wind shear were found better else-

where, as they are less contaminated by convection. This

indicates that the downscaling performances can be im-

proved for the GSDM variant E32–S31 by selecting the

adequate predictor for the two different periods. More work

is needed, however, to extend these findings to other

regions.

Further work will be conducted in a near future to allow

the GSDM to run over a very large area such as the contig-

uous United States. First, the regression models will be

adapted such that it can reproduce the orographic effects,

drawing from the work of Gagnon et al. (2013). Then, since

calibration can only be performed over a limited domain, a

procedure will be proposed that ensures spatial coherence of

the model parameters for each date. Finally, the verification

aspect will be extended by propagating the downscaled fields

into a high-resolution distributed hydrological model, to

assess the extent to which improvements in reproducing fine-

scale details in precipitation improve the simulation of the

streamflow.
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APPENDIX

Technical Considerations for Minimizing L
Because of the stochasticity of the Gibbs sampling, the

cost function L to be minimized during the calibration of

the GSDM is itself a random quantity, meaning that repli-

cations of its evaluation (with identical parameters) will lead

to different values. Several approaches exist for tackling

optimization problems under a noisy cost function. First,

fixing at the beginning of the Gibbs sampling the random

‘‘seed,’’ i.e., the pseudorandom number generator of the

machine, will stabilize L across its different evaluations,

ensuring convergence of the optimization. Second, consid-

ering for every evaluation ofL not only one estimate but the

average of multiple replications will make the response

surface of the model (i.e., the representation of the cost

function in the parameter space) smoother. A certain

smoothness reduces the risk of minor local minima, but also

increases the robustness of the solution to the random seed.

Third, using derivative-free optimization algorithms is safer,

as they can handle nonsmooth and nondifferentiable cost

functions. Given these considerations, one must choose a

strategy that ensures a sufficient robustness at an acceptable

computational cost. In this study, the optimization has been

found satisfactory when using the derivative-free Nelder and

Mead (1965) algorithm (also known as the downhill sim-

plex), fixing the random seed, but restricting to a single

replication when evaluating L . Indeed, in our study the

number of dates in the verification period (over which L is

averaged) was found high enough for ensuring a sufficient

smoothness.

Another consideration for the calibration of the GSDM is

the risk of local minima in the response surface. This may

typically occur if different parameters induce a similar ef-

fect in the model. For instance here, the parameters of the

regression model for SD(i,j) influence the spatial variability

of the rainfall field, but so does the parameter bd in the

model of E(i,j). Global optimization algorithms are de-

signed to find the global minimum among complex response

surfaces, but at a slow convergence rate. As a much faster

approach for this specific optimization problem, we

suggest a sequential optimization based on the progressive

complexification of the model to be calibrated. In Tables 2

and 3, one can note that every model, except the top one,

has a ‘‘parent’’ model to which it reduces by neutralizing

one (or sometimes two) free parameters (i.e., setting their

value to 0 or 1 such that its effect vanishes). For example,

E32 has E21 as parent, while E21 and E30 share the same

parent, E10. By calibrating the first parent model and using

the so-optimized parameters as initial values for the opti-

mization of the next ‘‘child’’ model, and so on, we ensure

that any child model performs at least as good as its less

complex parent model.
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